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Deterministic method for predicting the 
strength distribution of a fibre bundle 
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Owing to the non-strain hardening plastic behaviour of the aluminium matrix and the weak 
fibre/matrix interface, it has been shown that the strength of a carbon fibre-reinforced 
aluminium matrix composite made by diffusion bonding of prepreg layers can be derived from 
the corresponding fibre bundle strength. Application of Coleman's model to predict bundle 
strength leads to the conclusion that the composite must break when 15% of the fibres are 
broken. This greatly overestimates the experimental composite strength. Overestimations made 
by using the Coleman model are due to some implicit assumptions which are not valid in the 
case under consideration and which may consequently not describe our material. A new 
approach is proposed for the calculation of the strength distribution of a fibre bundle, based 
on the same fracture mechanism (fibres fracture progressively until the catastrophic fracture) 
but without restrictive assumptions. The real interpolated experimental fibre strength 
distribution (and not the Weibull distribution) is taken into account to predict bundle strength. 
The proposed method clearly shows the limit of strength prediction, in term of bundle size 
(number of fibres and gauge length). The risk of making predictions following the Weibull 
distribution out of the range of the observations (through single-fibre tensile tests) is 
demonstrated. 

1. I n t r o d u c t i o n  
The main objective of this work was to predict the 
tensile properties of a carbon fibre-reinforced alumi- 
nium matrix composite made by hot pressing of pre- 
preg layers from the properties of its components, and 
to learn how to improve the properties of the compo- 
nents and thus those of the composite. A thorough 
mechanical characterization of the fibre was carried 
out to establish how the strength of carbon fibres is 
affected by reaction with A1 during hot pressing. 
Single fibres were tested in tension after annealing 
treatments of Al-coated carbon fibres (simulating hot 
pressing conditions) and dissolution of the AI coating 
1-1]. A new deterministic method of describing rupture 
probability has been developed and is used to analyse 
the results of single fibre tensile tests [2]. 

It is assumed that the tensile properties of the 
composite mainly depend on the properties of the 
fibre: i.e. the highest composite strength is obtained 
with the most resistant fibres. With fibre strength 
depending on temperature T and time t of the reaction 
with A1, it is possible to optimize the composite 
processing parameters T and t, with the additional 
condition of ensuring sufficient diffusion bonding of 
the Al-coated carbon fibres during hot pressing. 

However, it would also be interesting to be able to 
predict the exact composite strength from fibres, 

matrix and possibly - interface properties. A good 
understanding of the role and relative importance of 
the different components on mechanical behaviour is 
necessary to establish such a prediction model. Thus a 
thorough characterization of the unidirectional com- 
posite was carried out. 

The rule of mixtures (ROM) is the most commonly 
used model to predict composite strength. According 
to the ROM, the strength of the composite is the mean 
of matrix and fibre strength weighted by their respect- 
ive volumic fraction. In this model, fibre and matrix 
are supposed to undergo the same strain during tensile 
testing. As an estimation of fibre strength, the middle 
fibre strength obtained through single-fibre tests is 
mostly retained, without taking due consideration of 
the fracture mechanism of the composite. This model 
considers the variation of strength from fibre to fibre 
to be negligible, although it can be large and signific- 
ant (in our case a factor of 4 between the lowest and 
the greatest failure stress - see Fig. 3a below). Thus, 
the choice of the fibre strength to be introduced in the 
ROM equation is not obvious. A first approach con- 
sists in calculating the strength of a fibre bundle from 
fibre-strength distribution and then introducing this 
strength into the ROM. Coleman [3] applied the 
theory of bundle strength developed by Daniels I-4] to 
predict the strength of infinite bundles of fibres, which 
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obey the Weibull distribution [5]. The principle of this 
model is explained more extensively below. The ana- 
lysis of bundle strength is very useful for determining 
the characteristic value of fibre strength, but it is not 
always an accurate representation of failure when the 
fibres are well bonded with the matrix, and when the 
matrix is able to redistribute load in the vicinity of a 
broken fibre through shear stresses at the fibre/matrix 
interface. In this case, the two models which are 
mostly used are those of Rosen (cumulative weakening 
model [6]) and Zweben (fibre break propagation 
model [7]). A more recent model was developed by 
Ochiai and co-workers [8, 9] for the case of elastic 
fibre-plastically deformable metal-matrix composites. 
In all these models, the fibre strength is assumed to 
obey a Weibull distribution. 

In the case of our C/A1 composite material, the 
mechanical characterization in tensile tests of uni- 
directional laminate suggests that (i) the matrix be- 
haves plastically without significant strain hardening; 
and (ii) the ill're/matrix bonding is weak. Therefore 
the composite strength must be derived from the 
corresponding bundle strength. Application of 
Coleman's model leads here to the conclusion that the 
composite must break when 15% of the fibres are 
broken. Thus the composite strength must be at least 
700 MPa, which is already a large overestimation, 
although the matrix strength is not taken into ac- 
count. 

It is shown below that very strong assumptions are 
implicit in Coleman's model, which may consequently 
not describe a real material. A new approach, which 
does not need any of these very restrictive assump- 
tions, is proposed to calculate the strength of a bundle, 
and applied for estimating composite strength. 

2. Tensi le  behav iour  of a H M 3 5 / A I  
c o m p o s i t e  

The composite material is composed of high-modu- 
lus carbon fibres (HM35) which reinforce a 99.5 wt % 
aluminium matrix. Composite unidirectional lamina- 
tes were manufactured by diffusion bonding of 
HM35/A1 prepreg layers (Toho-Beslon Co., Ltd.). 
Density measurements and image analysis give an 
average fibre volume fraction of 35%. Unidirectional 
laminate test specimens were prepared with a 
gauge length of 25 mm and a cross-section of 4.13 
_+ 0.20 mm 2, which correspond to 45 000 + 2000 fi- 

bres in the composite. Tensile tests were performed 
under a constant displacement rate of 1 mm min- 1. 

Fig. 1 shows a typical stress-strain curve. Two 
linear parts and a transition region joining the two 
parts can be observed. In the first part, the A1 matrix 
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Figure 1 Tensile b e h a v i o u r  of  H M 3 5 / A 1  un id i r ec t i ona l  compos i t e .  

has elastic behaviour; in the second linear part the 
matrix behaves plastically without strain hardening 
and therefore makes no more contribution to the 
E-modulus of the composite. The experimental 
Young's moduli E1 (E2) in the first (second) linear part 
are in complete agreement with the ROM (see Table 
I). The matrix yield strain %1 is 0.06%, whereas the 
composite failure strain is 0.31 _+ 0.07%. The com- 
posite strength ~R is 433 +_ 49 MPa. 

Thus, according to this behaviour, it can be calcu- 
lated that only 4% of the load at rupture is carried by 
the matrix. Moreover, when fibres break the already 
yielded matrix is not able to carry additional shear 
stresses. A progressive load transfer from the matrix 
into the broken fibre by shear stresses at the 
fibre/matrix interface is therefore not possible. The 
fibre/matrix bonding is weak, as can be observed on 
the rupture surface (Fig. 2). Once broken, fibres be- 
come ineffective for carrying load and the composite 
strength can be derived from the corresponding fibre 
bundle strength. 

To calculate bundle strength, the first step is a 
thorough characterization of single-fibre strength. 

3. M e c h a n i c a l  c h a r a c t e r i z a t i o n  of H M 3 5  
single f ibres  

Since HM35 carbon fibres react with aluminium 

T A B L E  I P red i c t i on  of  E - m o d u l i  t h r o u g h  the  rule  of m ix tu r e  

C o m p o s i t e s  E ( G P a )  V o l u m e  f rac t ion  (%) E x V ( G P a )  

H M 3 5  fibres E e = 350* Vf = 0.35 
AI m a t r i x  E m = 45 V m = 0.65 

E x p e r i m e n t a l  values: 

EmX Vm = 2 9  

Ef • Vf + Em X Vm 
E 1 = 150 

Ef • Ff = 121 

El• Vf 
E 2 = 121  

* Akzo  Co.  da t a .  
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Thus, strength measurements were performed at three 
different gauge lengths: 2.5, 20 and 40 mm. Putting 
together the three complementary parts of experi- 
mental strength distribution calculated at the smallest 
of the three gauge lengths L ( = 2.5 ram), a "widest" 
strength distribution could be determined (Fig. 3a). 
Fig. 3b shows the corresponding defect distribution. 
This distribution was obtained with three series of 30 
tensile tests. About 600 tests at L = 2.5 mm would 
have been necessary to reach the same precision in the 
description of the material. 

Figure 2 SEM micrograph of rupture surface of HM35/Al com- 
posite. 
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Figure 3 (a) Strength distribution of riM35 fibre after reaction with 
A1 matrix; (b) corresponding defect distribution�9 ( ) Experi- 
mental; ( - - )  Weibull distribution; L = 2.5 ram. 

during the consolidation process, single-fibre tests 
were performed after annealing treatment of Al-coated 
fibres which simulates hot pressing conditions - 
followed by dissolution of the A1 matrix [1]. A new 
method of describing failure probability has been 
developed [2] and used to analyse the results. It is 
based on a precise description of the population of 
critical defects in the fibre, characterized by their 
critical stress. This model allows extremely precise 
predictions of experimental strength distributions at 
gauge lengths other than the experimental lengths, but 
only in the range of observed strengths. To observe the 
highest number of defects and to have the broadest 
prediction range, the most sparing method is to do 
tensile tests at different complementary gauge lengths. 

4. Classical prediction of the strength of 
a fibre bundle 

Coleman [3] calculated the strength of a fibre bundle 
tested in tension under strain control (i.e. the strain 
and thus the stress in the unbroken fibres of the bundle 
increase at a constant rate). During the tensile test, the 
load carried by the bundle increases as the load 
carried by each intact fibre increases in a greater 
extent more than the number of remaining intact 
fibres decreases. Just before rupture, this proportion of 
intact effective fibres decreases catastrophically. 

Thus the strength of the bundle is obtained by 
maximizing the total load carried by the bundle as a 
function of strength in an unbroken fibre. Assuming 
that the strength of a fibre obeys a Weibull distribu- 
tion, the strength of a bundle of fibres cy b is expressed 
as follows 

cy b = c~ o m - 1 1 "  e x p ( -  l / m )  (1) 

where cy0 is the scale parameter (average strength) and 
m the shape parameter (characterizing the scatter) 
determined by fitting experimental strength distribu- 
tions of fibres with a Weibull function. The fibre 
cumulative failure probability Pf corresponding to the 
rupture of the bundle is given by 

Pf = 1 - e x p ( -  l / m )  (2) 

Taking m = 6, we obtain Pr = 15 %, which leads to an 
overestimation of composite strength. 

Three strong assumptions are implicit in this model. 

1. The Weibull statistic enables a good description 
of the material, and the correct Weibull para- 
meters m and cy o have been determined. 

2. The bundle has an infinite number of fibres, 
which ensures the continuous stress redistribu- 
tion in intact fibres after some fibres have 
broken. 

3. The fibres of the bundle break exactly in the 
order and at the level fixed by the Weibull dis- 
tribution. 

In practice, there is only a finite number of fibres in a 
bundle. Consequently the strength distribution of 
these fibres does not exactly follow the Weibull dis- 
tribution, as already observed in the case of sets of 
about 30 fibres tested to establish the Weibull dis- 
tribution itself. Overestimations made by this model 
are then naturally due to these very restrictive as- 
sumptions. Therefore a new approach is proposed 
based on the previously described fracture mech- 
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anisms (progressive fracture until catastrophic frac- 
ture) but without any other assumptions. 

5. A n e w  approach to  predict  the  
s t rength  of  a f ibre  bundle  

A bundle of N fibres will be broken at a stress cy if at 
least one among the N fibres is broken at q. Consider- 
ing the stress redistribution, at least one of the N - 1 
remaining intact fibres is broken at ( N / N  - 1) c~ . . . .  
and so forth to the last fibre, which must be broken at 
the stress Nc~. Thus the cumulative rupture prob- 
ability pb Of a bundle of N fibres at stress cy, can be 
expressed with the rupture probability function of the 
fibres Prr: 

For large values of N, this expression can be simplified 
a s  

P~(~) = exp ln[1 - r l  - U,(u ~)]s/.] ~- du 

(4) 

Fig. 4 shows the predicted bundle strength distribu- 
tion obtained with this model (from the experimental 
fibre strength distribution represented in Fig. 3a) for 

different numbers of fibres in the bundle and two 
gauge lengths (2.5 and 40 mm). The interpolated ex- 
perimental fibre strength distribution function is taken 
as U r. No hypothesis is made on the form of the 
distribution outside the range of observed strength 
values. As a result, the prediction of the bundle 
strength can only be made in this range. 

The scattering and the average strength of the 
bundle strength distributions decrease with increasing 
number of fibres. For  L = 2.5 ram, a bundle of 20000 
or more is already broken at the smallest strength 
values observed through single-fibre tensile testing. 
For L = 40 ram, we have little information in the 
range of small failure probabilities for the single fibre, 
as it is the largest tested gauge length (at this length it 
is as if only 34 fibres have been tested, whereas at 
2.5 mm it is as if about 600 fibres have been tested). 
Therefore, for N > 1000, a bundle must already be 
broken at the smallest observed strength and in the 
range of observed strength, pb is constant ( = 1). 

It is interesting to know the necessary minimal 
number n of tested single fibres allowing us to predict 
the strength distribution of a bundle of N fibres at the 
same gauge length. Numerical simulations have been 
made, assuming that the fibres follow a Weibull 
strength distribution. Results are shown in Fig. 5a for 
different m-parameters (m = 1, 3, 6, 9), i.e. for different 
scatterings in single fibre strength. The curves give the 
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Figure 4 Bundle strength distribution as a function of the number  
of fibres at a gauge length L of (a) 2.5 and (b) 40ram. + ,  
Experimental distribution; - - ,  predictions. 
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maximal number N of fibres in a bundle as a function 
of the number n of tested fibres, so that the failure 
probability of the bundle remains less than 50% for a 
stress equivalent to the smallest fibre strength ob- 
served through n tensile tests. 

The more fibres tested, the lower the failure prob- 
ability at minimal strength which can be observed, 
and therefore the higher the possible number N of 
fibres in a bundle without breaking at this smallest 
strength value. In the case of the C/A1 tested fibres, the 
Weibull shape parameter is about 6. According to the 
curves of Fig. 5, at the gauge length L = 4 0 m m  
(n = 31) (L = 2.5 mm, n ~ 600), the largest bundle 
whose strength distribution can be predicted must 
contain about 180 (7000) fibres. 

6. Prediction of the strength of a C/AI 
composite 

According to the previous study, the failure prob- 
ability of a bundle of 45 000 fibres is already 1 at the 
smallest observed fibre strength value. In addition, the 
scatter of the bundle-strength distribution must be 
very small and may be neglected. It must be assumed 
that the strength of the 45 000-fibre bundle is less than 
or equal to the smallest measured fibre strength, i.e. 
1194 MPa. 

As the number N of fibres in the bundle is great 
enough, no information (jumps in the strength dis- 
tribution, for instance) is lost in predicting the bundle 
strength distribution from the Weibull fitting instead 
of the experimental distribution of fibre strength 
(Fig. 6). It might be expected that the prediction of the 
45 000-fibre bundle strength from the Weibull correla- 
tion (in this case, extrapolation at strength values 
lower than the lowest observed fibre strength value) is 
correct. The results of calculations are summarized in 
Fig. 7, and leads to a C/AI composite strength between 
190 and 260 MPa (depending on the gauge length), 
which is much lower than the measured value. 

The risk of making out-of-range predictions follow- 
ing the Weibull statistics has already been mentioned. 
No critical defect has been observed experimentally 
under 1194 MPa, and the last failure predictions are 
implicitly based on the assumption that the fibres may 
contain critical defects under 600 MPa. Since the pre- 
dictions are widely underestimated, it may be assumed 
that there is not so much critical defect in the fibre. 

Finally, it has not proved possible to give better 
than an overestimated value for bundle strength. It 
corresponds to the most critical observed defect in the 
fibres. The ROM leads to the C/A1 composite strength 

c~c = 0.35 x 1194 + 0.65 x 2 7  = 4 3 5 M P a  

where 27 is the matrix yield strength. 435 MPa is 
exactly the experimental strength. Thus there is no 
more critical defect in the fibre than the most critical 
defect observed through single-fibre tensile tests. 

7. Conclusions 
The method proposed here for predicting the prob- 
ability of a bundle is deterministic, as the real c o r n -  
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Figure 7 Bundle strength distribution at different gauge lengths 
calculated from fibre strength distribution following the 
Weibull statistic (fitted curves). Single fibres 
(N = 1); - - - ,  bundles (N = 50000). L = (1) 25;'(2) 55; (3) 110 ram. 

position of the bundle is taken into account to predict 
its strength. The probability that several fibres in the 
bundle have the same strength is not zero, and may 
even be significant. 

Considering the real critical defect population of the 
fibre (Fig. 3b), this probability must be significant, 
which would cause a more catastrophic rupture of the 
bundle than is predicted with the classical model. 

The proposed method clearly shows the limit of 
strength predictions which can be made from fibre 
characterization, in terms of bundle size (length and 
number of fibres). The problem here is of the same 
nature as for prediction of the effect of size on fibre 
strength [2]. 
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